Nowadays, smartphones work not only as personal devices, but also as distributed IoT edge devices uploading information to a cloud. Their secure authentications become more crucial as information from them can spread wider. Keystroke dynamics is one of prominent candidates for authentications factors. Combined with PIN/pattern authentications, keystroke dynamics provide a user-friendly multi-factor authentication for smartphones and other IoT devices equipped with keypads and touch screens. There have been many studies and researches on keystroke dynamics authentication with various features and machine-learning classification methods. However, most of researches extract the same features for the entire user and the features used to learn and authenticate the user's keystroke dynamics pattern. Since the same feature is used for all users, it may include features that express the users?? keystroke dynamics well and those that do not. The authentication performance may be deteriorated because only the discriminative feature capable of expressing the keystroke dynamics pattern of the user is not selected. In this paper, we propose a parameterized model that can select the most discriminating features for each user. The proposed technique can select feature types that better represent the user's keystroke dynamics pattern using only the normal user's collected samples. In addition, performance evaluation in previous studies focuses on average EER(equal error rate) for all users. EER is the value at the midpoint between the FAR(false acceptance rate) and FRR(false rejection rate), FAR is the measure of security, and FRR is the measure of usability. The lower the FAR, the higher the authentication strength of keystroke dynamics. Therefore, the performance evaluation is based on the FAR. Experimental results show that the FRR of the proposed scheme is improved by at least 10.791% from the maximum of 31.221% compared with the other schemes.
한국전자통신연구원 지식공유플랫폼에서 제공하는 모든 저작물(각종 연구과제, 성과물 등)은 저작권법에 의하여 보호받는 저작물로 무단복제 및 배포를 원칙적으로 금하고 있습니다. 저작물을 이용 또는 변경하고자 할 때는 다음 사항을 참고하시기 바랍니다.
저작권법 제24조의2에 따라 한국전자통신연구원에서 저작재산권의 전부를 보유한 저작물의 경우에는 별도의 이용허락 없이 자유이용이 가능합니다. 단, 자유이용이 가능한 자료는 "공공저작물 자유이용허락 표시 기준(공공누리, KOGL) 제4유형"을 부착하여 개방하고 있으므로 공공누리 표시가 부착된 저작물인지를 확인한 이후에 자유이용하시기 바랍니다. 자유이용의 경우에는 반드시 저작물의 출처를 구체적으로 표시하여야 하고 비영리 목적으로만 이용이 가능하며 저작물을 변형하거나 2차 저작물로 사용할 수 없습니다.
<출처표시방법 안내> 작성자, 저작물명, 출처, 권호, 출판년도, 이용조건 [예시1] 김진미 외, "매니코어 기반 고성능 컴퓨팅을 지원하는 경량커널 동향", 전자통신동향분석, 32권 4호, 2017, 공공누리 제4유형 [예시2] 심진보 외, "제4차 산업 혁명과 ICT - 제4차 산업 혁명 선도를 위한 IDX 추진 전략", ETRI Insight, 2017, 공공누리 제 4유형
공공누리가 부착되지 않은 자료들을 사용하고자 할 경우에는 담당자와 사전협의한 이후에 이용하여 주시기 바랍니다.