In addition to the traditional TDM/FDM, the advanced television systems committee (ATSC) 3.0 next generation digital TV standard has adopted state-of-the-art coding and modulation, as well as the new layered division multiplexing (LDM) technology. The ATSC 3.0 system is able to provide higher data throughput, more robust reception, better spectrum efficiency, and flexible service combinations in one RF channel with different robustness and reception conditions. Due to the adoption of a two-layer LDM, the coverage for ATSC 3.0 is very different from the legacy one-transmitter-one-coverage ATSC 1.0 system. With the new enabling technologies, the ATSC 3.0 can greatly increase the coverage/service areas, reduce the distance between co-channel assignments, and introduce local program insertion and targeted advertisement. This paper addresses the ATSC 3.0 coverage and co-channel interference issues, by using the two-layer LDM technology with different operating parameters. Simulations demonstrate that, similar to the 4G long term evolution, the ATSC 3.0 co-channel assignment could be reduced to two times the service coverage radius. This means an improvement of the spectrum efficiency by up to four times in comparison with today's system. It is also proved through simulations that significant TV program gains can be obtained with this new system. The deployment of single frequency networks can further improve the coverage and reduce the interference.
KSP Keywords
ATSC 3.0, Advanced television systems committee(ATSC), Coding and Modulation, Coverage Radius, Data throughput, Enabling technologies, Long term Evolution(LTE), RF channel, Spectrum efficiency, TV program, co-channel assignment
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.