In this paper, we suggest a basic topical model(TM) framework to adapt speech recognition system to multi-domain and prevent topical errors. This paper employs the cosine similarities between target and context words at a spoken utterance as the topical model parameters. The TM is applied to frames having a large number of candidate words at lattice network, and it adjusts the ranking of candidate words by adding it to total cost estimated from acoustic model(AM) and language model(LM). To cover multidomain, the word embedding was trained with 5.5 billion text corpus from multi-domain. As an acoustic model and a language model, DNN-HMM and N - gram were selected. 501 sentences (10,054 words) includes 35 topics were used as an evaluation data set. As a result, the best performances were obtained by our approach, and the performance of WERR was increased up to about 4% compared with N-gram based model. The WERR increased above 10% when the word errors were correctly detected. The results show this suggestion has a possibility of adapting a model to multi-domains without sub-topic models.
KSP Keywords
DNN-HMM, Data sets, Language Model, Model parameter, Multi-Domain, Preliminary study, Speech recognition system, Word Embedding, acoustic model, lattice network, n-Gram
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.