In this paper, we introduce a novel acoustic source localization in a three-dimensional (3D) space, based on a direction estimation technique. Assuming an acoustic source at a distance from adjacent microphones, its waves spread in a planar form called a planar wavefront. In our system, the directions and steering angles between the acoustic source and the microphone array are estimated based on a planar wavefront model using a delay and sum beamforming (DSBF) system and an array of two-dimensional (2D) microelectromechanical system (MEMS) microphones. The proposed system is designed with parallel processing hardware for real-time performance and implemented using a cost-effective field programmable gate array (FPGA) and a micro control unit (MCU). As shown in the experimental results, the localization errors of the proposed system were less than 3 cm when an impulsive acoustic source was generated over 1 m away from the microphone array, which is comparable to a position-based system with reduced computational complexity. On the basis of the high accuracy and real-time performance of localizing an impulsive acoustic source, such as striking a ball, the proposed system can be applied to screen-based sports simulation.
KSP Keywords
Adjacent microphones, Computational complexity, Delay and Sum Beamforming, Direction estimation, Effective field, Estimation Technique, Field Programmable Gate Arrays(FPGA), High accuracy, Micro control unit(MCU), Micro-electro-mechanical system(MEMS), Microphone arrays
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.