Electrical annealing (EA) is one of the post treatments to enhance the electrical performances of organic devices. To date, the improvements using EA have only been reported for the solution-processed devices because its mechanism has been known as the alignments of ionic impurities or polymer chains. In this paper, we applied EA to thermally evaporated organic diodes which not have ionic impurities or polymer chains. After EA, the turn-on voltage of the diode was reduced, and the forward-bias current of the diode was increased without changing the reverse-bias current, resulting in an improvement of the cutoff frequency of the rectifier. In addition, we proposed a new mechanism to explain why the EA can be applied to the thermally evaporated organic devices. Based on time-of-flight secondary ion mass spectrometry and impedance spectra, we suggest that this improvement is due to the creation of a MoO3:pentacene mixed layer, leading to ease of charge injection. We believe that our finding will be helpful to understand change at the organic/metal interfaces and useful to apply a wide range of organic devices such as organic photovoltaics, organic light-emitting diodes, and organic thin-film transistors.
KSP Keywords
Impedance spectra, Improved performance, Mixed layer, Organic Diodes, Organic photovoltaics, Polymer chain, Reverse bias, Thermally evaporated, Thin-Film Transistor(TFT), Time of flight secondary ion mass spectrometry(ToF-SIMS), Turn-on voltage
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.