객체 인식이란 주어진 영상 내의 시각적인 정보를 분석하여 영상 내에서 객체의 위치를 찾아내는 연구 분야로, 자율 주행, 영상 감시 등의 다양한 산업에서 활용되고 있다. 연구 초기에는 객체의 특징을 미리 설계하여 비교하는 방법을 이용하였는데, 합성곱 신경망을 이용한 기계학습이 객체 인식에서 좋은 성능을 보인다는 것이 증명되었다. 딥러닝을 이용한 객체 인식 방법에서는 인식 정확도를 향상시키기 위하여 여러 인공 신경망 모델을 동시에 이용하는 앙상블 방법을 적용할 수 있는데, 이는 인식 속도를 감소시키는 단점이 있다. 본 논문에서는 앙상블 방법에서 신경망 모델의 출력인 특징 맵을 하나로 조합함으로써 인식 속도를 향상시키는 방법을 제시한다. 실험을 통해 제안 방법을 이용하여 인식 속도가 향상된 것을 확인하였으며, GPU 메모리를 더 효율적으로 활용할 수 있는 방법을 적용하여 인식 성능을 더욱 향상시킬 수 있을 것으로 기대된다.
저작권정책 안내문
한국전자동신연구원 지식공유플랫폼 저작권정책
한국전자통신연구원 지식공유플랫폼에서 제공하는 모든 저작물(각종 연구과제, 성과물 등)은 저작권법에 의하여 보호받는 저작물로 무단복제 및 배포를 원칙적으로 금하고 있습니다. 저작물을 이용 또는 변경하고자 할 때는 다음 사항을 참고하시기 바랍니다.
저작권법 제24조의2에 따라 한국전자통신연구원에서 저작재산권의 전부를 보유한 저작물의 경우에는 별도의 이용허락 없이 자유이용이 가능합니다. 단, 자유이용이 가능한 자료는 "공공저작물 자유이용허락 표시 기준(공공누리, KOGL) 제4유형"을 부착하여 개방하고 있으므로 공공누리 표시가 부착된 저작물인지를 확인한 이후에 자유이용하시기 바랍니다. 자유이용의 경우에는 반드시 저작물의 출처를 구체적으로 표시하여야 하고 비영리 목적으로만 이용이 가능하며 저작물을 변형하거나 2차 저작물로 사용할 수 없습니다.
<출처표시방법 안내> 작성자, 저작물명, 출처, 권호, 출판년도, 이용조건 [예시1] 김진미 외, "매니코어 기반 고성능 컴퓨팅을 지원하는 경량커널 동향", 전자통신동향분석, 32권 4호, 2017, 공공누리 제4유형 [예시2] 심진보 외, "제4차 산업 혁명과 ICT - 제4차 산업 혁명 선도를 위한 IDX 추진 전략", ETRI Insight, 2017, 공공누리 제 4유형
공공누리가 부착되지 않은 자료들을 사용하고자 할 경우에는 담당자와 사전협의한 이후에 이용하여 주시기 바랍니다.