A forecast interval is effective for handling the forecast uncertainty in solar photovoltaic systems. In estimating the forecast interval, most available approaches apply an identical policy to all the point forecasts. This results in an inefficient interval (e.g. an unnecessarily wide interval for an accurate forecast). They also adopt a complex model and even require modification of the available deterministic forecasting model, which may adversely affect their application. To overcome these limitations, the authors introduce a forecast uncertainty-aware forecast interval. They calculate a forecast accuracy-related uncertainty metric from an ensemble method based on the dropout technique. The dropout technique is widely used in deep learning models. This implies that the proposed approach can be applied to available deep learning forecasting models without modifying them. Using the uncertainty metric and relevant data of previous forecast results, they estimate the uncertainty-aware forecast interval. Through experiments using real-world data, they first demonstrate the close relation of their uncertainty metric to the forecasting accuracy. Then, they demonstrate that the uncertainty-aware forecast interval reduces the mean interval length by up to 25.7% and decreases the prediction interval coverage probability by 4.07%, compared to available approaches. This illustrates that their approach results in an effective interval.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.