18ZS1300, The development of smart context-awareness foundation technique for major industry acceleration,
Jang Byungtae
Abstract
This paper provides a perceptually transparent rendering algorithm for an ultrasound-based mid-air haptic device. In a series of experiments, we derive a systematic mapping function relating from the device command value to final user's perceived magnitude of a mid-air vibration feedback. The algorithm is designed for the ultrasonic mid-air haptic interface that is capable of displaying vibro-tactile feedback at a certain focal point in mid-air through ultrasound phased array technique. The perceived magnitude at the focal point is dependent on input parameters, such as input command intensity, modulation frequency, and position of the focal point in the work-space. This algorithm automatically tunes these parameters to ensure that the desired perceived output at the user's hand is precisely controlled. Through a series of experiments, the effect of the aforementioned parameters on the physical output pressure are mapped, and the effect of this output pressure to the final perceived magnitude is formulated, resulting in the mapping from the different parameters to the perceived magnitude. Finally, the overall transparent rendering algorithm was evaluated, showing better perceptual quality than rendering with simple intensity command.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.