Quality estimation is an important task in machine translation that has attracted increased interest in recent years. A key problem in translation-quality estimation is the lack of a sufficient amount of the quality annotated training data. To address this shortcoming, the Predictor-Estimator was proposed recently by introducing ?쐗ord prediction?? as an additional pre-subtask that predicts a current target word with consideration of surrounding source and target contexts, resulting in a two-stage neural model composed of a predictor and an estimator. However, the original Predictor-Estimator is not trained on a continuous stacking model but instead in a cascaded manner that separately trains the predictor from the estimator. In addition, the Predictor-Estimator is trained based on single-task learning only, which uses target-specific quality-estimation data without using other training data that are available from other-level quality-estimation tasks. In this article, we thus propose a multi-task stack propagation, which extensively applies stack propagation to fully train the Predictor-Estimator on a continuous stacking architecture and multi-task learning to enhance the training data from related other-level quality-estimation tasks. Experimental results on WMT17 quality-estimation datasets show that the Predictor-Estimator trained with multi-task stack propagation provides statistically significant improvements over the baseline models. In particular, under an ensemble setting, the proposed multi-task stack propagation leads to state-of-the-art performance at all the sentence/word/phrase levels for WMT17 quality estimation tasks.
KSP Keywords
Art performance, Estimation quality, Estimation tasks, Machine Translation(MT), Neural model, Quality estimation, Two-Stage, multi-task learning, state-of-The-Art, training data
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.