19HS3200, (엑소브레인-1세부) 휴먼 지식증강 서비스를 위한 지능진화형 WiseQA 플랫폼 기술 개발,
김현기
초록
Quality estimation is an important task in machine translation that has attracted increased interest in recent years. A key problem in translation-quality estimation is the lack of a sufficient amount of the quality annotated training data. To address this shortcoming, the Predictor-Estimator was proposed recently by introducing ?쐗ord prediction?? as an additional pre-subtask that predicts a current target word with consideration of surrounding source and target contexts, resulting in a two-stage neural model composed of a predictor and an estimator. However, the original Predictor-Estimator is not trained on a continuous stacking model but instead in a cascaded manner that separately trains the predictor from the estimator. In addition, the Predictor-Estimator is trained based on single-task learning only, which uses target-specific quality-estimation data without using other training data that are available from other-level quality-estimation tasks. In this article, we thus propose a multi-task stack propagation, which extensively applies stack propagation to fully train the Predictor-Estimator on a continuous stacking architecture and multi-task learning to enhance the training data from related other-level quality-estimation tasks. Experimental results on WMT17 quality-estimation datasets show that the Predictor-Estimator trained with multi-task stack propagation provides statistically significant improvements over the baseline models. In particular, under an ensemble setting, the proposed multi-task stack propagation leads to state-of-the-art performance at all the sentence/word/phrase levels for WMT17 quality estimation tasks.
KSP 제안 키워드
Art performance, Estimation quality, Estimation tasks, Machine Translation(MT), Quality estimation, Two-Stage, multi-task learning, neural model, state-of-The-Art, training data
저작권정책 안내문
한국전자동신연구원 지식공유플랫폼 저작권정책
한국전자통신연구원 지식공유플랫폼에서 제공하는 모든 저작물(각종 연구과제, 성과물 등)은 저작권법에 의하여 보호받는 저작물로 무단복제 및 배포를 원칙적으로 금하고 있습니다. 저작물을 이용 또는 변경하고자 할 때는 다음 사항을 참고하시기 바랍니다.
저작권법 제24조의2에 따라 한국전자통신연구원에서 저작재산권의 전부를 보유한 저작물의 경우에는 별도의 이용허락 없이 자유이용이 가능합니다. 단, 자유이용이 가능한 자료는 "공공저작물 자유이용허락 표시 기준(공공누리, KOGL) 제4유형"을 부착하여 개방하고 있으므로 공공누리 표시가 부착된 저작물인지를 확인한 이후에 자유이용하시기 바랍니다. 자유이용의 경우에는 반드시 저작물의 출처를 구체적으로 표시하여야 하고 비영리 목적으로만 이용이 가능하며 저작물을 변형하거나 2차 저작물로 사용할 수 없습니다.
<출처표시방법 안내> 작성자, 저작물명, 출처, 권호, 출판년도, 이용조건 [예시1] 김진미 외, "매니코어 기반 고성능 컴퓨팅을 지원하는 경량커널 동향", 전자통신동향분석, 32권 4호, 2017, 공공누리 제4유형 [예시2] 심진보 외, "제4차 산업 혁명과 ICT - 제4차 산업 혁명 선도를 위한 IDX 추진 전략", ETRI Insight, 2017, 공공누리 제 4유형
공공누리가 부착되지 않은 자료들을 사용하고자 할 경우에는 담당자와 사전협의한 이후에 이용하여 주시기 바랍니다.