Recently, with the active development of wearable electrocardiogram (ECG) devices such as smart-bands or portable ECG devices, efficient ECG signal processing technology that can be applied in real-time has been actively studied. However, a wearable ECG device is exposed to various noise situations, thereby reducing the reliability of the detected R point or QRS interval. In addition, as early warning techniques in healthcare systems have been studied, real-time ECG signal processing techniques have become very important in wearable ECG devices. In this paper, we propose an efficient real-time R and QRS detection method using two kinds of first-order derivative filters and a max filter to analyze ECG signals measured from wearable ECG devices in real-time. The proposed method detects the R point and QRS interval in units of a sliding window for real-time processing and combines the detected R points in each sliding window. Also, the reliability of the detected R points and RR intervals is examined through noise region analysis using the histogram characteristic of a sample point. The performance of the proposed method was verified by the MIT-BIH database (DB), CYBHi DB and real ECG data measured from the developed wearable ECG patch. The proposed method achieves Se = 99.80%, +P = 99.80%, and DER = 0.36% against MIT-BIH DB. In addition, the proposed method enables accurate R point detection and heart rate variability (HRV) analysis even with noisy ECG signals.
KSP Keywords
Detection Method, ECG device, ECG signal processing, Early Warning, First-Order derivative, Healthcare System, MIT-BIH database, QRS Detection, RR interval, Real-Time processing, Region Analysis
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.