Motion imitation is a fundamental communication skill for a robot; especially, as a nonverbal interaction with a human. Owing to kinematic configuration differences between the human and the robot, it is challenging to determine the appropriate mapping between the two pose domains. Moreover, technical limitations while extracting 3D motion details, such as wrist joint movements from human motion videos, results in significant challenges in motion retargeting. Explicit mapping over different motion domains indicates a considerably inefficient solution. To solve these problems, we propose a three-phase reinforcement learning scheme to enable a NAO robot to learn motions from human pose skeletons extracted from video inputs. Our learning scheme consists of three phases: (i) phase one for learning preparation, (ii) phase two for a simulation-based reinforcement learning, and (iii) phase three for a human-in-the-loop-based reinforcement learning. In phase one, embeddings of the motions of a human skeleton and robot are learned by an autoencoder. In phase two, the NAO robot learns a rough imitation skill using reinforcement learning that translates the learned embeddings. In the last phase, the robot learns motion details that were not considered in the previous phases by interactively setting rewards based on direct teaching instead of the method used in the previous phase. Especially, it is to be noted that a relatively smaller number of interactive inputs are required for motion details in phase three when compared to the large volume of training sets required for overall imitation in phase two. The experimental results demonstrate that the proposed method improves the imitation skills efficiently for hand waving and saluting motions obtained from NTU-DB.
KSP Keywords
3D motion, Communication skill, Human Skeleton, Human motion, Human pose, Human-in-the-Loop, Interactive teaching, Learning framework, Motion Retargeting, Motion imitation, Nao robot
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.