For long-distance flying, drones often need to charge their battery at quick battery-charging machines (QCMs) because of their limited battery capacity. If a drone individually chooses a QCM without any coordination, a drone network may experience QCM congestion when multiple drones select the same QCM. This QCM congestion may lead to an increasing drone traffic delay. In order to solve this problem, we propose a cloud-based drone navigation (CBDN) system for efficient drone battery charging in drone networks. In order to achieve this goal, the CBDN gathers drone traffic information and determines efficient drone routes so as to minimize the overall QCM congestion level for drone battery charging using cloud-based management. Our key idea is to find globally coordinated drone routes so as to minimize the total traffic delay in a drone network by reducing the overall QCM congestion level. In order to demonstrate the effectiveness of the proposed system, we evaluated the performance of CBDN by simulating a drone network under various network conditions. The simulation results show that CBDN is more efficient than the existing shortest-path-based drone route planning algorithms in terms of end-to-end traffic delay and QCM average utilization.
KSP Keywords
Cloud-based management, Congestion level, End to End(E2E), Long distance, Planning algorithm, battery capacity, battery charging, path-based, route planning, shortest path, simulation results
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.