Journal Article
Influence of Hydrogen Incorporation on Conductivity and Work Function of VO2 Nanowires
Cited 6 time in
Share
Authors
Jae-Eun Kim, Jung Yeol Shin, Hyun-Seok Jang, Jun Woo Jeon, Won G. Hong, Hae Jin Kim, Junhee Choi, Gyu-Tae Kim, Byung Hoon Kim, Jonghyurk Park, Young Jin Choi, Jeong Young Park
We report improved conductance by reducing the work function via incorporation of hydrogen into VO 2 nanowires. The VO 2 nanowires were prepared using the chemical vapor deposition method with V 2 O 5 powder on silicon substrates at 850 °C. Hydrogenation was carried out using the high-pressure hydrogenation method. Raman spectroscopy confirmed that the incorporated hydrogen atoms resulted in a change in the lattice constant of the VO 2 nanowires (NWs). To quantitatively measure the work function of the nanowires, Kelvin probe force microscopy (KPFM) was employed at ambient conditions. We found that the work function decreased with increasing H 2 pressure, which also resulted in increased conductance. This is associated with hydrogen diffused into the VO 2 that acts as a donor to elevate the Fermi level, which was also confirmed by KPFM. From these results, tuning of the reversible electrical properties of VO 2 NWs, including the conductance and work function, can be achieved by incorporating hydrogen at relatively moderate temperatures.
KSP Keywords
Chemical vapor deposition method, Fermi level, H 2, Hydrogen atoms, Hydrogen incorporation, Kelvin Probe force microscopy, Lattice constants, Raman spectroscopy, Silicon substrate, VO 2, Work Function
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.