Local keypoint matching is an important step for computer vision based tasks. In recent years, Deep Convolutional Neural Network (CNN) based strategies have been employed to learn descriptor generation to enhance keypoint matching accuracy. Recent state-of-art works in this direction primarily rely upon a triplet based loss function (and its variations) utilizing three samples: An anchor, a positive and a negative. In this work we propose a novel 'Twin Negative Mining' based sampling strategy coupled with a Quad loss function to train a deep neural network based pipeline (Twin-Net) for generating a robust descriptor that provides an increased discriminatory power to differentiate between patches that do not correspond to each other. Our sampling strategy and choice of loss function is aimed at placing an upper bound that descriptors of two patches representing same location could be at worst no more dissimilar than the descriptors of two similar looking patches that do-not belong to same 3D location. This results in an increase in the generalization capability of the network and outperforms its existing counterparts when trained over the same datasets. Twin-Net outputs a 128-dimensional descriptor and uses $L{2}$ Distance as the similarity metric, and hence conforms to the classical descriptor matching pipelines such as that of SIFT. Our results on Brown and HPatches datasets demonstrate Twin-Net's consistently better performance as well as better discriminatory and generalization capability as compared to the state-of-art.
KSP Keywords
3D location, Belong to, Computer Vision(CV), Convolution neural network(CNN), Coupled with, Deep convolutional neural networks, Deep neural network(DNN), Descriptor matching, Generalization capability, Local keypoint, Matching accuracy
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.