In many studies regarding driver monitoring system, they directly employed face detection algorithms for general-purpose in an unconstrained environment. These algorithms are generally not suitable for limited resources of vehicles. Unlike the general unconstrained environment, the range of detectable face sizes and locations can be estimated in the vehicle environment. In this paper, we propose the Detectable Object-sizes Range Estimation algorithm (DORE) to estimates the range of detectable face sizes through specific information in the vehicle environment. The DORE algorithm makes images, in which a face is likely to be detected in the in-vehicle environment, to be fed into a face detection algorithm, such as Multi-task cascaded Convolutional Neural Networks (MTCNN) which stably detect faces rather than others. Our experiment shows that DORE applied MTCNN not only had the same performance as MTCNN in terms of accuracy but also had relatively low processing time in the vehicle environment.
KSP Keywords
Convolution neural network(CNN), Detection algorithm, Driver Monitoring System, Face Sizes, Face detection, In-vehicle, Limited resources, Range estimation, Unconstrained environment, Vehicle Environment, cascaded convolutional neural networks
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.