Solving the classification problem, unbalanced number of dataset among the classes often causes performance degradation. Especially when some classes dominate the other classes with its large number of datasets, trained model shows low performance in identifying the dominated classes. This is common case when it comes to medical dataset. Because the case with a serious degree is not quite usual, there are imbalance in number of dataset between severe case and normal cases of diseases. Also, there is difficulty in precisely identifying grade of medical data because of vagueness between them. To solve these problems, we propose new architecture of convolutional neural network named Tournament based Ranking CNN which shows remarkable performance gain in identifying dominated classes while trading off very small accuracy loss in dominating classes. Our Approach complemented problems that occur when method of Ranking CNN that aggregates outputs of multiple binary neural network models is applied to medical data. By having tournament structure in aggregating method and using very deep pretrained binary models, our proposed model recorded 68.36% of exact match accuracy, while Ranking CNN recorded 53.40%, pretrained Resnet recorded 56.12% and CNN with linear regression recorded 57.48%. As a result, our proposed method is applied efficiently to cataract grading which have ordinal labels with imbalanced number of data among classes, also can be applied further to medical problems which have similar features to cataract and similar dataset configuration.
KSP Keywords
Accuracy loss, Classification problems, Convolution neural network(CNN), Exact match, Medical dataset, Neural network model, Performance gain, Proposed model, linear regression, neural network(NN), performance degradation
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.