Depressive symptoms are related to abnormalities in the autonomic nervous system (ANS), and physiological signals that can be used to measure and evaluate such abnormalities have previously been used as indicators for diagnosing mental disorder, such as major depressive disorder (MDD). In this study, we investigate the feasibility of developing an objective measure of depressive symptoms that is based on examining physiological abnormalities in individuals when they are experiencing mental stress. To perform this, we recruited 30 patients with MDD and 31 healthy controls. Then, skin conductance (SC) was measured during five 5-min experimental phases, comprising baseline, mental stress, recovery from the stress, relaxation, and recovery from the relaxation, respectively. For each phase, the mean amplitude of the skin conductance level (MSCL), standard deviations of the SCL (SDSCL), slope of the SCL (SSCL), mean amplitude of the non-specific skin conductance responses (MSCR), number of non-specific skin conductance responses (NSCR), and power spectral density (PSD) were evaluated from the SC signals, producing 30 parameters overall (six features for each phase). These features were used as input data for a support vector machine (SVM) algorithm designed to distinguish MDD patients from healthy controls based on their physiological responses. Statistical tests showed that the main effect of task was significant in all SC features, and the main effect of group was significant in MSCL, SDSCL, SSCL, and PSD. In addition, the proposed algorithm achieved 70% accuracy, 70% sensitivity, 71% specificity, 70% positive predictive value, 71% negative predictive value in classifying MDD patients and healthy controls. These results demonstrated that it is possible to extract meaningful features that reflect changes in ANS responses to various stimuli. Using these features, detection of MDD was feasible, suggesting that SC analysis has great potential for future diagnostics and prediction of depression based on objective interpretation of depressive states.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.