ETRI-Knowledge Sharing Plaform



논문 검색
구분 SCI
연도 ~ 키워드


학술지 Hierarchical Sampling Optimization of Particle Filter for Global Robot Localization in Pervasive Network Environment
Cited 7 time in scopus Download 19 time Share share facebook twitter linkedin kakaostory
이유철, 명현
ETRI Journal, v.41 no.6, pp.782-796
한국전자통신연구원 (ETRI)
17PV1100, 쾌적한 실내환경을 위한 지능형 종합 공기질 관리 솔루션 개발, 이유철
This paper presents a hierarchical framework for managing the sampling distribution of a particle filter (PF) that estimates the global positions of mobile robots in a large-scale area. The key concept is to gradually improve the accuracy of the global localization by fusing sensor information with different characteristics. The sensor observations are the received signal strength indications (RSSIs) of Wi-Fi devices as network facilities and the range of a laser scanner. First, the RSSI data used for determining certain global areas within which the robot is located are represented as RSSI bins. In addition, the results of the RSSI bins contain the uncertainty of localization, which is utilized for calculating the optimal sampling size of the PF to cover the regions of the RSSI bins. The range data are then used to estimate the precise position of the robot in the regions of the RSSI bins using the core process of the PF. The experimental results demonstrate superior performance compared with other approaches in terms of the success rate of the global localization and the amount of computation for managing the optimal sampling size.
KSP 제안 키워드
Hierarchical framework, Mobile robots, Optimal sampling, Particle filter (pf), Radio signal strength(RSS), Range data, Robot localization, Sampling Optimization, Sampling distribution, Sampling size, Sensor information