Prolonged exposure to mental stress reduces human work efficiency in daily life and may increase the risk of diabetes and cardiovascular diseases. However, identification of the true degree of stress in its initial stage can reduce the risk of life threatening diseases. In this paper, we proposed a multilevel stress detection system using ultra-short term recordings of a low cost wearable sensor. We designed an experimental paradigm based on Mental Arithmetic Tasks (MAT) to properly stimulate different levels of stress. During the experiment, Photoplethysmogram (PPG) signals were recorded along with subjective feedback for validation of stress induction. The beat-to-beat interval series, estimated from sixty seconds long segments of PPG signals, were used to extract different features based on their reliability. In order to capture the temporal information in the ultra-short term segments of PPG, we introduced a new set of features which have the potential to quantify the temporal information at point-to-point level in the Poincare plot. We also used a Sequential Forward Floating Selection (SFFS) algorithm to mitigate the issues of irrelevancy and redundancy among features. We investigated two classifiers based on quadratic discriminant analysis (QDA) and Support Vector Machine (SVM). The results of the proposed method produced 94.33% accuracy with SVM for five-level identification of mental stress. Moreover, we validated the generalizability of the system by evaluating its performance on a dataset recorded with a different stressor (Stroop). In conclusion, we found that the proposed multilevel stress detection system in conjunction with new parameters of the Poincare plot has the potential to detect five different mental stress states using ultra-short term recordings of a low-cost PPG sensor.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.