When training a deep learning model with distributed training, the hardware resource utilization of each device depends on the model structure and the number of devices used for training. Distributed training has recently been applied to edge computing. Since edge devices have hardware resource limitations such as memory, there is a need for training methods that use hardware resources efficiently. Previous research focused on reducing training time by optimizing the synchronization process between edge devices or by compressing the models. In this paper, we monitored hardware resource usage based on the number of layers and the batch size of the model during distributed training with edge devices. We analyzed memory usage and training time variability as the batch size and number of layers increased. Experimental results demonstrated that, the larger the batch size, the fewer synchronizations between devices, resulting in less accurate training. In the shallow model, training time increased as the number of devices used for training increased because the synchronization between devices took more time than the computation time of training. This paper finds that efficient use of hardware resources for distributed training requires selecting devices in the context of model complexity and that fewer layers and smaller batches are required for efficient hardware use.
KSP Keywords
Batch size, Distributed training, Edge Computing, Edge devices, Hardware Resources, Model structure, Number of layers, Resource Usage, Resource analysis, Resource utilization, Training time
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.