Electrochromic materials and devices have attracted much attention with their ability to tune the transmissions of visible to infrared (IR) light, allowing the creation of smart windows. This study presents a novel electrochromic device (ECD)-based photonic device that can modulate IR light intensity in a planar optical waveguide ECD. To configure it, a multilayer ECD made of WO3 is integrated on a polymer optical waveguide platform. By using the waveguide to change the optical properties of the ECD electrically, IR light propagating along the optical waveguide core undergoes electroabsorption loss due to the change in charge carrier density in WO3 layer and its intensity is modulated with an extinction depth of 0.6 dB mm?닋1. Experimental results show that the device is capable of discrete intensity attenuation by applying a distinct level gate voltage. Periodic application of gate voltage leads the device to serve as an optical modulator on the order of subseconds. The results also confirm that a new approach to consider ECD-based optical modulators can pave the way for the development of planar photonic-integrated circuits and systems.
KSP Keywords
And systems, Gate voltage, IR light, Light intensity, Light modulation, New approach, Optical modulator, Periodic application, Planar optical waveguide, Polymer optical waveguide, charge carrier density
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.