Human recognition technologies for security systems require high reliability and easy accessibility in the advent of the internet of things (IoT). While several biometric approaches have been studied for user recognition, there are demands for more convenient techniques suitable for the IoT devices. Recently, electrical frequency responses of the human body have been unveiled as one of promising biometric signals, but the pilot studies are inconclusive about the characteristics of human body as a transmission medium for electric signals. This paper provides a multi-domain analysis of human body impulse responses (HBIR) measured at the receiver when customized impulse signals are passed through the human body. We analyzed the impulse responses in the time, frequency, and wavelet domains and extracted representative feature vectors using a proposed accumulated difference metric in each domain. The classification performance was tested using the $k-nearest neighbors (KNN) algorithm and the support vector machine (SVM) algorithm on 10-day data acquired from five subjects. The average classification accuracies of the simple classifier KNN for the time, frequency, and wavelet features reached 92.99%, 77.01%, and 94.55%, respectively. In addition, the kernel-based SVM slightly improved the accuracies of three features by 0.58%, 2.34%, and 0.42%, respectively. The result shows potential of the proposed approach for user recognition based on HBIR.
KSP Keywords
Biometric Signals, Classification Performance, Feasibility study, Feature Vector, Frequency response(FreRes), High Reliability, Human Recognition, Human body, Internet of thing(IoT), IoT Devices, K-nearest neighbors (KNN) algorithm
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.