There has been growing interest among researchers in quality estimation (QE), which attempts to automatically predict the quality of machine translation (MT) outputs. Most existing works on QE are based on supervised approaches using quality-annotated training data. However, QE training data quality scores readily become imbalanced or skewed: QE data are mostly composed of high translation quality sentence pairs but the data lack low translation quality sentence pairs. The use of imbalanced data with an induced quality estimator tends to produce biased translation quality scores with ?쐆igh?? translation quality scores assigned even to poorly translated sentences. To address the data imbalance, this article proposes a simple, efficient procedure called uniformly interpolated balancing to construct more balanced QE training data by inserting greater uniformness to training data. The proposed uniformly interpolated balancing procedure is based on the preparation of two different types of manually annotated QE data: (1) default skewed data and (2) near-uniform data. First, we obtain default skewed data in a naive manner without considering the imbalance by manually annotating qualities on MT outputs. Second, we obtain near-uniform data in a selective manner by manually annotating a subset only, which is selected from the automatically quality-estimated sentence pairs. Finally, we create uniformly interpolated balanced data by combining these two types of data, where one half originates from the default skewed data and the other half originates from the near-uniform data. We expect that uniformly interpolated balancing reflects the intrinsic skewness of the true quality distribution and manages the imbalance problem. Experimental results on an English-Korean quality estimation task show that the proposed uniformly interpolated balancing leads to robustness on both skewed and uniformly distributed quality test sets when compared to the test sets of other non-balanced datasets.
KSP Keywords
Data Quality, Data imbalance, Imbalance Problem, Imbalanced Data, Machine Translation(MT), Quality Scores, Quality estimation, Skewed data, Translation quality, Uniformly distributed, training data
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.