This paper describes the development trends and service provision examples of disaster occurrence and spread prediction technology for various disasters such as tsunamis, floods, and fires. In terms of fires, we introduce the WIFIRE system, which predicts the spread of large forest fires in the United States, and the Metro21: Smart Cities Institute project, which predicts the risk of building fires. This paper describes the development trends in tsunami prediction technology in the United States and Japan using artificial intelligence (AI) to predict the occurrence and size of tsunamis that cause great damage to coastal cities in Japan, Indonesia, and the United States. In addition, it introduces the NOAA big data platform built for natural disaster prediction, considering that the use of big data is very important for AI-based disaster prediction. In addition, Google's flood forecasting system, domestic and overseas earthquake early warning system development, and service delivery cases will be introduced.
KSP Keywords
Big data platform, Coastal cities, Development trends, Earthquake early warning, Flood Forecasting, Natural disaster, Prediction technology, Service Provision, Smart city, United States, artificial intelligence
This work is distributed under the term of Korea Open Government License (KOGL)
(Type 4: : Type 1 + Commercial Use Prohibition+Change Prohibition)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.