The switching noise and conversion efficiency of step-up DC-DC converters need to be improved to meet increasing demand. The delta-sigma modulation (DSM) technique is typically used to improve the performance of buck converters; however, this control scheme is not directly applicable for boost converters. This paper presents a boost DC?밆C converter using a continuous-time delta-sigma modulator (DSM) controller for battery-powered and noise-sensitive applications. The proposed converter can adjust a wide range of output voltages dynamically by clamping the maximum duty cycle of the DSM, thus enabling stable and robust transient responses of the converter. The switching harmonics in the converter output are reduced effectively by the noise shaping property of the modulator. Moreover, the converter does not suffer from instability of mode switching due to the use of a fixed third-order DSM. Fabricated in a 180 nm CMOS, the converter occupies an active area of 0.76 mm2. It produced an output voltage ranging from 2.5 V to 5.0 V at an input voltage of 2.0 V and achieved a peak conversion efficiency of 95.5%. The output voltage ripples were maintained under 25 mV for all load conditions. A low noise output spectrum with a first spurious peak located ?닋91 dBc from the signal was achieved.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.