Journal Article
License Plate Image Generation using Generative Adversarial Networks for End-To-End License Plate Character Recognition from a Small Set of Real Images
License Plate Character Recognition (LPCR) is a technology for reading vehicle registration plates using optical character recognition from images and videos, and it has a long history due to its usefulness. While LPCR has been significantly improved with the advance of deep learning, training deep networks for LPCR module requires a large number of license plate (LP) images and their annotations. Unlike other public datasets of vehicle information, each LP has a unique combination of characters and numbers depending on the country or the region. Therefore, collecting a sufficient number of LP images is extremely difficult for normal research. In this paper, we propose LP-GAN, an LP image generation method, by applying an ensemble of generative adversarial networks (GAN), and we also propose a modified lightweight YOLOv2 model for an efficient end-to-end LPCR module. With only 159 real LP images available online, thousands of synthetic LP images were generated by using LP-GAN. The generated images not only looked similar to real ones, but they were also shown to be effective for training the LPCR module. As a result of performance tests with 22,117 real LP images, the LPCR module trained with only the generated synthetic dataset achieved 98.72% overall accuracy, which is comparable to that of training with a real LP image dataset. In addition, we improved the processing speed of LPCR about 1.7 times faster than that of the original YOLOv2 model by using the proposed lightweight model.
KSP Keywords
End to End(E2E), Image datasets, Image generation, License plate character recognition, License plate image, Lightweight model, Optical character recognition, Overall accuracy, Performance Test, Processing speed, Public Datasets
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.