We demonstrate a multilayer palladium diselenide (PdSe2) high-performance photodetector. The photodetector exhibits the photodetectivity of 0.15 × 1010 Jones under laser illumination ({\\lambda} = 655 nm and power of 0.057 mWmm?닋2). The negative threshold voltage shift in transfer characteristics upon laser illumination is mainly attributed to the photogating effect. Systematic analysis of experimental data indicates that the photogating effect and space charge limited conduction are simultaneously involved in the conduction mechanism. We observe that the photogenerated current increases logarithmically as the light intensity increases, and it persists (~200 s) even after stopping the illumination. The slow decrease in current was attributed to the trapping of photogenerated charge carriers at the PdSe2/SiO2 interface and the defects in the structure of PdSe2. We also observe a reproducible and stable time-resolved photoresponse with respect to the incident laser power. We believe that this study can be an important source of information and can help researchers to continue to investigate methods that would allow them to maximise the potential of PdSe2 for photodetector applications.
KSP Keywords
5 nm, Charge carriers, Experimental data, Field Effect Transistor(FET), High performance, Laser power, Light intensity, Space charge limited(SCL), Space charge limited conduction, Systematic analysis, Threshold voltage shift
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.