Journal Article
Online Speech Recognition Using Multichannel Parallel Acoustic Score Computation and Deep Neural Network (DNN)- Based Voice-Activity Detector
This paper aims to design an online, low-latency, and high-performance speech recognition system using a bidirectional long short-term memory (BLSTM) acoustic model. To achieve this, we adopt a server-client model and a context-sensitive-chunk-based approach. The speech recognition server manages a main thread and a decoder thread for each client and one worker thread. The main thread communicates with the connected client, extracts speech features, and buffers the features. The decoder thread performs speech recognition, including the proposed multichannel parallel acoustic score computation of a BLSTM acoustic model, the proposed deep neural network-based voice activity detector, and Viterbi decoding. The proposed acoustic score computation method estimates the acoustic scores of a context-sensitive-chunk BLSTM acoustic model for the batched speech features from concurrent clients, using the worker thread. The proposed deep neural network-based voice activity detector detects short pauses in the utterance to reduce response latency, while the user utters long sentences. From the experiments of Korean speech recognition, the number of concurrent clients is increased from 22 to 44 using the proposed acoustic score computation. When combined with the frame skipping method, the number is further increased up to 59 clients with a small accuracy degradation. Moreover, the average user-perceived latency is reduced from 11.71 s to 3.09-5.41 s by using the proposed deep neural network-based voice activity detector.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.