Buffer layers in Cu(In,Ga)Se2 (CIGS) solar cells are highly preferable to be vacuum-compatible and use non-toxic materials not only for the film but also for the manufacturing process. Moreover, high controllability for the energy levels of buffer layers is greatly desirable for achieving higher solar cell efficiency because the buffer layer is formed directly onto the absorber layer which generates carriers. In this study, the S/(O + S) composition ratio of the Zn(O,S) thin films was finely controlled by varying O2/(Ar + O2) gas flow ratio using a reactive sputtering method including an Ar/O2 mixture gas and a single ZnS sputter target. The structural, electrical, and photovoltaic performance properties of the Zn(O,S) thin films and their CIGS solar cells were investigated at varied S/(O + S) composition ratios. As the S/(O + S) composition ratio of the Zn(O,S) films increased, bandgap bowing occurred with the increase of the conduction band and valence band energy levels. The photovoltaic performance was greatly influenced by the difference of the conduction band energies between the Zn(O,S) buffer and the CIGS absorber. When the conduction band energy of the Zn(O,S) was too high or too low compared to that of the CIGS, it increased the carrier recombinations or series resistance, respectively, which induced losses of the open-circuit voltage and the fill factor. The controlling and optimizing the energy levels at the Zn(O,S)/CIGS interface were crucial for improved solar cell performances.
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.