20PS1400, Development of cloud big data platform for the innovative manufacturing in ceramic industry,
Suyoung Chi
Abstract
Lightweight neural networks that employ depthwise convolution have a significant computational advantage over those that use standard convolution because they involve fewer parameters; however, they also require more time, even with graphics processing units (GPUs). We propose a Repetition-Reduction Network (RRNet) in which the number of depthwise channels is large enough to reduce computation time while simultaneously being small enough to reduce GPU latency. RRNet also reduces power consumption and memory usage, not only in the encoder but also in the residual connections to the decoder. We apply RRNet to the problem of resource-constrained depth estimation, where it proves to be significantly more efficient than other methods in terms of energy consumption, memory usage, and computation. It has two key modules: the Repetition-Reduction (RR) block, which is a set of repeated lightweight convolutions that can be used for feature extraction in the encoder, and the Condensed Decoding Connection (CDC), which can replace the skip connection, delivering features to the decoder while significantly reducing the channel depth of the decoder layers. Experimental results on the KITTI dataset show that RRNet consumes 3.84\times less energy and 3.06\times less memory than conventional schemes, and that it is 2.21\times faster on a commercial mobile GPU without increasing the demand on hardware resources relative to the baseline network. Furthermore, RRNet outperforms state-of-the-art lightweight models such as MobileNets, PyDNet, DiCENet, DABNet, and EfficientNet.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.