Data augmentation has been proven effective which, by preventing overfitting, not only enhances the performance of a deep neural network but also leads to a better generalization even with limited dataset. Recently introduced regional dropout based data augmentation strategies remove (or replace) some parts of an input image with a desideratum to make the network focus on less discriminative portions of an image, which results in an improved performance. However, such approaches usually possess' strong-edge' problem caused by an obvious change in the pixels at the positions where the image is manipulated. It may not only impact on the local convolution operation but can also provide clues for the network to latch on to, which do not align well with the fundamental philosophy of augmentation. In order to minimize such peculiarities, we introduce Smoothmix in which blending of images is done based on soft edges and the training labels are computed accordingly. Extensive analysis performed on CIFAR-10, CIFAR- 100 and ImageNet for image classification demonstrates state-of-the-art results. Furthermore, Smoothmix significantly increases the robustness of a network against image corruption which is validated by the experiments carried out on CIFAR-100-C ImageNet-C corruption datasets.
KSP Keywords
CIFAR-10, Data Augmentation, Deep neural network(DNN), Image classification, convolution operation, improved performance, state-of-The-Art
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.