20JR1100, Development of a Mobile Diet-monitoring Technology based on Multiple Biomarkers,
Dae-Sik Lee
Abstract
This paper presents a ZnO-CuO p-n heterojunction chemiresistive sensor that comprises CuO hollow nanocubes attached to ZnO spherical cores as active materials. These ZnO-CuO core-hollow cube nanostructures exhibit a remarkable response of 11.14 at 1 ppm acetone and 200 °C, which is a superior result to those reported by other metal-oxide-based sensors. The response can be measured up to 40 ppb, and the limit of detection is estimated as 9 ppb. ZnO-CuO core-hollow cube nanostructures also present high selectivity toward acetone against other volatile organic compounds and demonstrate excellent stability for up to 40 days. The outstanding gas-sensing performance of the developed nanocubes is attributed to their uniform and unique morphology. Their core-shell-like structures allow the main charge transfer pathways to pass the interparticle p-p junctions, and the p-n junctions in each particle increase the sensitivity of the reactions to gas molecules. The small grain size and high surface area of each domain also enhance the surface gas adsorption.
KSP Keywords
Active materials, Charge transfer, Chemiresistive sensor, Gas adsorption, Gas molecules, Highly sensitive, Limit of detection, Metal-oxide(MOX), P-N junction, Petri net(PN), Small grain size
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.