ETRI-Knowledge Sharing Plaform

ENGLISH

성과물

논문 검색
구분 SCI
연도 ~ 키워드

상세정보

학술지 Horizontal Pod Autoscaling in Kubernetes for Elastic Container Orchestration
Cited 54 time in scopus Download 61 time Share share facebook twitter linkedin kakaostory
저자
Thanh-Tung Nguyen, 엄유진, 김태홍, 박대헌, 김세한
발행일
202008
출처
Sensors, v.20 no.16, pp.1-18
ISSN
1424-8220
출판사
MDPI
DOI
https://dx.doi.org/10.3390/s20164621
협약과제
20HU1100, 축산질병 예방 및 통제 관리를 위한 ICT 기반의 지능형 스마트 안전 축사 기술 개발, 김세한
초록
Kubernetes, an open-source container orchestration platform, enables high availability and scalability through diverse autoscaling mechanisms such as Horizontal Pod Autoscaler (HPA), Vertical Pod Autoscaler and Cluster Autoscaler. Amongst them, HPA helps provide seamless service by dynamically scaling up and down the number of resource units, called pods, without having to restart the whole system. Kubernetes monitors default Resource Metrics including CPU and memory usage of host machines and their pods. On the other hand, Custom Metrics, provided by external software such as Prometheus, are customizable to monitor a wide collection of metrics. In this paper, we investigate HPA through diverse experiments to provide critical knowledge on its operational behaviors. We also discuss the essential difference between Kubernetes Resource Metrics (KRM) and Prometheus Custom Metrics (PCM) and how they affect HPA's performance. Lastly, we provide deeper insights and lessons on how to optimize the performance of HPA for researchers, developers, and system administrators working with Kubernetes in the future.
KSP 제안 키워드
CPU and memory usage, Container orchestration, Critical knowledge, High availability, Open source, Scaling up
본 저작물은 크리에이티브 커먼즈 저작자 표시 (CC BY) 조건에 따라 이용할 수 있습니다.
저작자 표시 (CC BY)