20HS2400, Development of AI Technology for Early Screening of Infant/Child Autism Spectrum Disorders based on Cognition of the Psychological Behavior and Respon,
Yoo Jang-Hee
Abstract
Although access control based on human face recognition has become popular in consumer applications, it still has several implementation issues before it can realize a stand-alone access control system. Owing to a lack of computational resources, lightweight and computationally efficient face recognition algorithms are required. The conventional access control systems require significant active cooperation from the users despite its non-aggressive nature. The lighting/illumination change is one of the most difficult and challenging problems for human-face-recognition-based access control applications. This paper presents the design and implementation of a user-friendly, stand-alone access control system based on human face recognition at a distance. The local binary pattern (LBP)-AdaBoost framework was employed for face and eyes detection, which is fast and invariant to illumination changes. It can detect faces and eyes of varied sizes at a distance. For fast face recognition with a high accuracy, the Gabor-LBP histogram framework was modified by substituting the Gabor wavelet with Gaussian derivative filters, which reduced the facial feature size by 40% of the Gabor-LBP-based facial features, and was robust to significant illumination changes and complicated backgrounds. The experiments on benchmark datasets produced face recognition accuracies of 97.27% on an E-face dataset and 99.06% on an XM2VTS dataset, respectively. The system achieved a 91.5% true acceptance rate with a 0.28% false acceptance rate and averaged a 5.26 frames/sec processing speed on a newly collected face image and video dataset in an indoor office environment.
KSP Keywords
Access control system, Active cooperation, Benchmark datasets, Computationally Efficient, Eyes detection, Face Image, Face dataset, False acceptance rate, Feature size, Gabor Wavelet, High accuracy
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.