Journal of Positioning, Navigation, and Timing, v.9, no.3, pp.151-156
ISSN
2288-8187
Publisher
항법시스템학회
Language
Korean
Type
Journal Article
Abstract
A technology for calculating the position of a device is very important for users who receive positioning services, regardless of various indoor/outdoor or with/without any positioning infrastructure existence environments. One of the positioning resources widely used at present, LTE, is a typical infrastructure that can overcome the space limitation, however its positioning method based on the position of the LTE base station has low accuracy. A method of constructing a radio wave map of an LTE signal has been proposed as a method for overcoming the accuracy, but it takes a lot of time and cost to perform high-density collection in a wide area. In this paper, we describe a method of creating a high-density DB for the entire region by using vehicle-based partial collection data. To create a positioning database, we applied the idea of Generative Adversarial Network (GAN), which has recently been in the spotlight in the field of deep learning, and learned the collected data. Then, a virtually generated map which having the smallest error from the actual data is selected as the optimum DB. We verified the effectiveness of the positioning DB generation algorithm using the positioning data obtained from un-collected area.
KSP Keywords
Adversarial Learning, Generation algorithm, High-density, Learning methods, Positioning method, Positioning services, Space limitation, Wide area, base station(BS), deep learning(DL), generative adversarial network
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.