Journal Article
Exploiting Defective RRAM Array as Synapses of HTM Spatial Pooler with Boost-factor Adjustment Scheme for Defect-tolerant Neuromorphic Systems
19ZB1800, Development of Neuromorphic Hardware by using High Performance Memristor Device based on Ulta-thin Film Structure,
Moon Seungeon
Abstract
A crossbar array architecture employing resistive switching memory (RRAM) as a synaptic element accelerates vector?뱈atrix multiplication in a parallel fashion, enabling energy-efficient pattern recognition. To implement the function of the synapse in the RRAM, multilevel resistance states are required. More importantly, a large on/off ratio of the RRAM should be preferentially obtained to ensure a reasonable margin between each state taking into account the inevitable variability caused by the inherent switching mechanism. The on/off ratio is basically adjusted in two ways by modulating measurement conditions such as compliance current or voltage pulses modulation. The latter technique is not only more suitable for practical systems, but also can achieve multiple states in low current range. However, at the expense of applying a high negative voltage aimed at enlarging the on/off ratio, a breakdown of the RRAM occurs unexpectedly. This stuck-at-short fault of the RRAM adversely affects the recognition process based on reading and judging each column current changed by the multiplication of the input voltage and resistance of the RRAM in the array, degrading the accuracy. To address this challenge, we introduce a boost-factor adjustment technique as a fault-tolerant scheme based on simple circuitry that eliminates the additional process to identify specific locations of the failed RRAMs in the array. Spectre circuit simulation is performed to verify the effect of the scheme on Modified National Institute of Standards and Technology dataset using convolutional neural networks in non-ideal crossbar arrays, where experimentally observed imperfective RRAMs are configured. Our results show that the recognition accuracy can be maintained similar to the ideal case because the interruption of the failure is suppressed by the scheme.
KSP Keywords
Compliance current, Convolution neural network(CNN), Current range, Input voltage, Low current, Multilevel resistance, National Institute of Standards and Technology, Negative voltage, Non-ideal, Pattern recognition, RRAM array
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.