In the manufacturing processes, process optimization tasks, to optimize their product quality, can be performed through the following procedures. First, process models mimicking functional relationships between quality characteristics and controllable factors are constructed. Next, based on these models, objective functions formulating process optimization problems are defined. Finally, optimization algorithms are applied for finding solutions for these functions. It is important to note that different solutions can be found whenever these algorithms are independently executed if a unique solution does not exist; this may cause confusion for process operators and engineers. This paper proposes a confidence interval (CI)-based process optimization method using second-order polynomial regression analysis. This method evaluates the quality of the different solutions in terms of the lengths of their CIs; these CIs enclose the outputs of the regression models for these solutions. As the CIs become narrower, the uncertainty about the solutions decreases (i.e., they become statistically significant). In the proposed method, after sorting the different solutions in ascending order, according to the lengths, the first few solutions are selected and recommended for the users. To verify the performance, the method is applied to a process dataset, gathered from a ball mill, used to grind ceramic powders and mix these powders with solvents and some additives. Simulation results show that this method can provide good solutions from a statistical perspective; among the provided solutions, the users are able to flexibly choose and use proper solutions fulfilling key requirements for target processes.
KSP Keywords
Ceramic powder, Controllable factors, Functional relationship, Manufacturing processes, Optimization algorithm, Optimization problem, Process Optimization, Process model, Product Quality, Quality characteristic, Regression Model
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.