Power amplifiers used for high-speed radio frequency (RF) consume a considerable amount of power and create thermal burden. The heat flux per module of power amplifiers that are based on gallium nitride (GaN) component devices, which have recently entered maturity in the market and shown excellent RF power output, is approximately 190 W/cm2, thereby causing thermal management burden. When the number of arrays increases, and the power consumption is large, liquid cooling methods, such as maximizing cooling performance by optimizing the liquid flow path design or designing the cooling liquid line as close as possible to the heat source in the power package module, are mainly considered. However, the close contact of the liquid lines to the heat source may form a dewdrop in the package module, thereby decreasing reliability, especially in a radar system with power array modules. As an alternative, dry cooling methods that use heat pipes have been investigated. However, radar array package modules have not elicited much research attention. In this study, an aluminum flat heat pipe (AFHP) was developed for a 1 × 4 3D array module for the RF power amplifier of the next-generation X-band radar. This module is lightweight and is based on aluminum material, has a flat shape, and facilitates antenna interconnection through its hole structures. Subsequently, an AFHP with an antenna interconnection structure was designed and fabricated. Moreover, the temperature limit in the GaN power device and the temperature distribution in the entire package module were evaluated by testing the 1 × 4 antenna array module structure at 193 W/cm2 of heat flux per module. The results obtained in this study could confirm the possibility of using AFHP as a dry cooling method to high heat flux application.
KSP Keywords
Close contact, Cooling liquid, Cooling method, GaN power device, Gallium nitride (gan), Generation X, High Speed, High heat flux, Hot-spot, Interconnection structure, Liquid cooling
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.