Road traffic volume survey is a survey to determine the number and type of vehicles passing at a specific point for a certain period of time. Previously, a method of classifying the number of vehicles and vehicle types has been used while a person sees an image photographed using a camera with the naked eye, but this has a disadvantage in that a lot of manpower and cost are incurred. Recently, a method of applying an automated algorithm has been widely attempted, but has a disadvantage in that the accuracy is inferior to the existing method performed by manpower. To address these problems, we propose a method to automate road traffic volume surveys and a new method to verify the results. The proposed method extracts the number of vehicles and vehicle types from an image using deep learning, analyzes the results, and automatically informs the user of candidates with a high probability of error, so that highly reliable traffic volume survey information can be efficiently generated. The performance of the proposed method is tested using a data set collected by an actual road traffic survey company. The experiment proved that it is possible to verify the vehicle classification and route simply and quickly using the proposed method. The proposed method can not only reduce the investigation process and cost, but also increase the reliability due to more accurate results.
KSP Keywords
Automated algorithm, Data sets, Naked eye, Probability of Error, Road Traffic, Traffic volume, Vehicle classification, Vehicle type, Verification method, deep learning(DL), highly reliable
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.