19VU1700, Development of self-reliance platform in defense advanced semiconductor materials and components for weapon system,
Jong-Won Lim
Abstract
This study investigates the applications of 3D printing technology in the wiring process used in the field of electronic packaging. A Cu wiring process is developed to replace the expensive Ag-based alternative primarily used in commercial 3D electronic circuit printing as per industry standards. The substrates needed for our experiments are developed using a 3D printer assembled prior to the research, through which poly-ether-ether-ketone (PEEK) proves to be a high-strength, high heat-resistance material capable of undergoing the packaging process. The Cu wiring process is performed via laser sintering in ambient condition using a Cu micro/nanoparticle paste. Adopting this method minimizes the cost and duration of the process without relying on inert atmosphere generation. The optimum laser sintering condition for the Cu paste is found to be two consecutive scans at 20 W. Energy dispersive X-ray spectroscopy (EDS) measurements show that the oxidation of the surface is about 1.35%, and further oxidation is prevented through epoxy molding. The touch sensor by Cu wiring module operate optimally even a month after its manufacture. 3D printing technology proves to be capable of replacing the wiring process used for electronic packaging.
KSP Keywords
3D Printing Technology, 3D printed, 3D printer, Cu paste, Electronic circuit, Heat-resistance, High-strength, Industry standard, Poly-ether-ether-ketone, Sintering condition, Sintering of Cu
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.