This article provides a secret key extraction aided by wireless transceiver for Internet of Things (IoT) based consumer electronic (CE) devices, which can be a promising alternative to the conventional secret storage with non-volatile memory. Exploiting the wireless transceiver as a source of secret key generation, we propose a new type of static random access memory (SRAM) physically unclonable function (PUF), especially focusing on run-time extraction from most connected CE devices without additional hardware. The response of the proposed PUF is further processed by a fuzzy extractor to reproduce the secure key, where we suggest to use low-complexity convolutional code combined with interleaver for error correction. In addition, run-time multiple readout capability of our wireless transceiver aided PUF enables to provide a helper data-less key reproduction scheme to reduce leaked information and implementation complexity. Experimental results on two platforms equipped with the IEEE 802.11 Wi-Fi and IEEE 802.15.4g Smart Utility Network (SUN) based wireless transceivers confirm that the proposed PUF and key reproduction schemes successfully generate the secret key at any time, which makes our approach easily applicable to various IoT based CE devices with security requirements.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.