20HS2600, 불확실한 지도 기반 실내ㆍ외 환경에서 최종 목적지까지 이동로봇을 가이드할 수 있는 AI 기술 개발,
이재영
초록
Extensive research has been carried out on intersection classification to assist the navigation in autonomous maneuvering of aerial, road, and cave mining vehicles. In contrast, our work tackles intersection classification at pedestrian-view level to support navigation of the slower and smaller robots for which it is too dangerous to steer on a normal road along with the usual vehicles. Particularly, we focus on investigating the kind of features a network may exploit in order to classify intersection at pedestrian-view. To this end, two sets of experiments have been conducted using an ImageNet-pretrained ResNet-18 architecture fine-tuned on our image-level pedestrian-view intersection classification dataset. First, ablation study is performed on layer depth to evaluate the importance of high-level feature, which demonstrated superiority in using all of the layers by yielding 77.56% accuracy. Second, to further clarify the need of such high level features, Class Activation Map (CAM) is applied to visualize the parts of an image that affect the most on a given prediction. The visualization justifies the high accuracy of an all-layers network.
KSP 제안 키워드
High accuracy, High-level features, Layer depth
저작권정책 안내문
한국전자동신연구원 지식공유플랫폼 저작권정책
한국전자통신연구원 지식공유플랫폼에서 제공하는 모든 저작물(각종 연구과제, 성과물 등)은 저작권법에 의하여 보호받는 저작물로 무단복제 및 배포를 원칙적으로 금하고 있습니다. 저작물을 이용 또는 변경하고자 할 때는 다음 사항을 참고하시기 바랍니다.
저작권법 제24조의2에 따라 한국전자통신연구원에서 저작재산권의 전부를 보유한 저작물의 경우에는 별도의 이용허락 없이 자유이용이 가능합니다. 단, 자유이용이 가능한 자료는 "공공저작물 자유이용허락 표시 기준(공공누리, KOGL) 제4유형"을 부착하여 개방하고 있으므로 공공누리 표시가 부착된 저작물인지를 확인한 이후에 자유이용하시기 바랍니다. 자유이용의 경우에는 반드시 저작물의 출처를 구체적으로 표시하여야 하고 비영리 목적으로만 이용이 가능하며 저작물을 변형하거나 2차 저작물로 사용할 수 없습니다.
<출처표시방법 안내> 작성자, 저작물명, 출처, 권호, 출판년도, 이용조건 [예시1] 김진미 외, "매니코어 기반 고성능 컴퓨팅을 지원하는 경량커널 동향", 전자통신동향분석, 32권 4호, 2017, 공공누리 제4유형 [예시2] 심진보 외, "제4차 산업 혁명과 ICT - 제4차 산업 혁명 선도를 위한 IDX 추진 전략", ETRI Insight, 2017, 공공누리 제 4유형
공공누리가 부착되지 않은 자료들을 사용하고자 할 경우에는 담당자와 사전협의한 이후에 이용하여 주시기 바랍니다.