ETRI-Knowledge Sharing Plaform



논문 검색
구분 SCI
연도 ~ 키워드


학술지 A Novel Experimental Approach to the Applicability of High-Sensitivity Giant Magneto-Impedance Sensors in Magnetic Field Communication
Cited 0 time in scopus Download 0 time Share share facebook twitter linkedin kakaostory
김장열, 조인귀, 이현준, 이재우, 문정익, 김성민, 김상원, 안승영, 김기범
IEEE Access, v.8, pp.193091-193101
20HH2100, [전문연구실] 10pT급 미소자계 기반 중장거리 자기장 통신기술, 조인귀
© 2013 IEEE. This article presents a new application field of a giant magneto-impedance (GMI) sensor. It shows valuable findings for the GMI sensor on the possibility of a new receiving element in magnetic field communication. The proposed GMI sensors serve as antennas and mixers in receiver systems. They have the advantage of being easily implemented and in terms of mass production and manufacturing processes due to the manufacture base on a printed circuit board (PCB). Their smaller size, lower cost, and higher sensitivity have more advantages than conventional magnetic sensors, such as the magneto-inductive, anisotropic magneto-resistive, and giant magneto-resistive sensors. Two types of PCB-based GMI sensors are proposed. The first type of GMI sensor is directly wound around the solenoid-shaped pickup coil onto an alumina insulation tube inserted with an amorphous microwire. The second type of GMI sensor has a patterned pickup coil that does not require the winding of the coil, similar to the patterned pickup coil of a micro electro-mechanical system-based GMI sensor. This GMI sensor provides a new geometry that can be easily manufactured with two PCB substrates. The proposed GMI sensors achieve the equivalent magnetic noise spectral density to the high-sensitivity characteristics of the pT/ surd Hz level. The equivalent magnetic noise spectral density of 1.5 pT/ surd Hz at 20.03 MHz is obtained for the first type of GMI sensor, and 3 pT/ surd Hz at 3.03 MHz is achieved the second type. The analyzed results of the bandwidth and the channel capacity for the two types of GMI sensors are acceptable. This first analysis confirms the possibility of the implementation of GMI sensors in magnetic field communication. The results of this experiment confirm the high performance of the proposed GMI sensors and their applicability in magnetic field communication. The detailed experimental results of the proposed GMI sensors are presented and discussed.
Amorphous microwire, giant magneto-impedance (GMI), high sensitivity, magnetic field communication, magnetic sensor
KSP 제안 키워드
Anisotropic magneto-resistive, Channel capacity, Equivalent magnetic noise, Experimental Approach, GMI sensor, Giant Magneto-Resistive Sensors, Giant Magneto-impedance, High Sensitivity, High performance, Higher sensitivity, Lower cost