In this paper, we develop and evaluate a high-density multi-GPU hardware sub-system for high performance computing and deep learning. The high-density multi-GPU hardware is implemented as an out-of-box hardware by extending PCI Express system bus via multi-Gbps class cable assemblies from a server. The high-density multi-GPU hardware extends the PCI Express in a multiple-ways and provides multiple GPUs for a server. The high-density multi-GPU hardware is developed to fit into 21 inches OCP Open Rack Vl and V2 rack and chassis having density of 12 GPUs in 4OU (Open rack Unit) height. The HPL and deep learning applications are tested to evaluate the performance of the developed high-density multi-GPU hardware. The initial test result of HPL is shown that the maximum performance of 36.22 TFLOPS (efficiency of 63.4%) with 12 NVIDIA P100 on triple sever nodes. For deep learning application, the resnet50 result of 3, 187.2 images/sec is obtained with 12 NVIDIA P100 on single sever node with synthetic data. The experimental results show that the developed multi-GPU hardware sub-system exhibits relatively good scalability in a single node especially deep learning applications than the HPL.
KSP Keywords
Deep learning application, Development and Evaluation, GPU hardware, High Performance Computing, High-density, Multi-GPU, Multiple GPUs, PCI-Express(PCIe), Sub-system, Synthetic data, System bus
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.