Work function tuning has a significant influence on the performance of semiconductor devices, owing to the formation of potential barriers at the interface between metal-semiconductor junctions. In this work, we introduce a technique for tuning the work function of ZnSnO thin films using high-density O2 plasma treatment. The work function and chemical composition of the ZnSnO thin film surfaces were investigated with regards to plasma treatment time through UPS/XPS systems. The optical band gap was estimated using Tauc's relationship from transmittance data. The work function of Zn0.6 Sn0.4 O thin film increased from 4.16 eV to 4.64 eV, and the optical band gap increased from 3.17 to 3.23 eV. The surface of Zn0.6 Sn0.4 O thin films showed a smooth morphology with an average of 0.65 nm after O2 plasma treatment. The O2 plasma treatment technique exhibits significant potential for application in high-performance displays in optical devices, such as thin-film transistors (TFTs), light-emitting diodes (LEDs), and solar cells.
KSP Keywords
65 nm, High performance, High-density, Metal-semiconductor, Optical band gap, Plasma treatment technique, Potential barrier, Smooth morphology, Solar Cells, Thin-Film Transistor(TFT), Tin oxide thin films
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.