Although sound source localization is a desirable technique in many communication systems and intelligence applications, the distortion caused by diffuse noise or reverberation makes the time delay estimation (TDE) between signals acquired by a pair of microphones a complicated and challenging problem. In this paper, we describe a method that can efficiently achieve sound source localization in noisy and reverberant environments. This method is based on the generalized cross-correlation (GCC) function with phase transform (PHAT) weights (GCC-PHAT) to achieve robustness against reverberation. In addition, to estimate the time delay robust to diffuse components and to further improve the robustness of the GCC-PHAT against reverberation, time-frequency(t-f) components of observations directly emitted by a point source are chosen by 'inversed' diffuseness. The diffuseness that can be estimated from the coherent-to-diffuse power ratio (CDR) based on spatial coherence between two microphones represents the contribution of diffuse components on a scale of zero to one with direct sounds from a source modeled to be fully coherent. In particular, the 'inversed' diffuseness is binarized with a very rigorous threshold to select highly reliable components for accurate TDE even in noisy and reverberant environments. Experimental results for both simulated and real-recorded data consistently demonstrated the robustness of the presented method against diffuse noise and reverberation.
KSP Keywords
Communication system, GCC-PHAT, Generalized Cross-correlation, Phase transform, Spatial coherence, diffuse noise, highly reliable, point source, power ratio, reverberant environments, sound source localization
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.