ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Conference Paper Learning Control Policy with Previous Experiences from Robot Simulator
Cited 2 time in scopus Share share facebook twitter linkedin kakaostory
Authors
Donghun Lee, Hyunseok Kim, Seonghyun Kim, Chan-Won Park, Jun Hee Park
Issue Date
2020-10
Citation
International Conference on Information and Communication Technology Convergence (ICTC) 2020, pp.863-865
Publisher
IEEE
Language
English
Type
Conference Paper
DOI
https://dx.doi.org/10.1109/ICTC49870.2020.9289214
Abstract
Advances in deep reinforcement learning enabled cost-efficient training of control policy of physical robot actions from robot simulators. Learning control policy in a simulated environment is cost-efficient over learning in a real environment. Reward engineering is one of the key components to train efficient control policy. For tasks with long horizons such as navigation and manipulation, a sparse reward is providing limited information. The robot simulator for a physical engine of physical robot manipulation has made it easy for researchers in the field of deep reinforcement learning to simulate complicated robot manipulation environments. In this paper, A robot manipulation simulator and a deep RL framework are utilized for implement a training control policy by utilizing previous experiences. For implementation, Recent innovation Hindsight Experience Replay (HER) algorithms with previous experiences to calculate dense rewards from a sparse reward is leveraged. Proposed implementation showed an approach to investigate the reward engineering method to formulate dense reward in robot manipulator tasks.
KSP Keywords
Control policy, Cost-efficient, Deep reinforcement learning, Experience replay, Key Components, Learning control, Limited information, Real environment, Reinforcement Learning(RL), Robot manipulation, Robot manipulator