Two algorithms are introduced for the computation of discrete integral transforms with a multiscale approach operating in discrete three-dimensional (3-D) volumes while considering its real-time implementation. The first algorithm, referred to as 3-D discrete Radon transform of planes, will compute the summation set of values lying in discrete planes in a cube that imitates, in discrete data, the integrals on two-dimensional planes in a 3-D volume similar to the continuous Radon transform. The normals of these planes, equispaced in ascents, cover a quadrilateralized hemisphere and comprise 12 dodecants. The second proposed algorithm, referred to as the 3-D discrete John transform of lines, will sum elements lying on discrete 3-D lines while imitating the behavior of the John or x-ray continuous transform on 3-D volumes. These discrete integral transforms do not perform interpolation on input or intermediate data, and they can be computed using only integer arithmetic with linearithmic complexity, thus outperforming the methods based on the Fourier slice-projection theorem for real-time applications. We briefly prove that these transforms have fast inversion algorithms that are exact for discrete inputs.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.