With the development in wireless communication and low-power device, users can receive various useful services such as electric vehicle (EV) charging, smart building, and smart home services at anytime and anywhere in smart grid (SG) environments. The SG devices send demand of electricity to the remote control center and utility center (UC) to use energy services, and UCs handle it for distributing electricity efficiently. However, in SG environments, the transmitted messages are vulnerable to various attacks because information related to electricity is transmitted over an insecure channel. Thus, secure authentication and key agreement are essential to provide secure energy services for legitimate users. In 2019, Kumar et al. presented a secure authentication protocol for demand response management in the SG system. However, we demonstrate that their protocol is insecure against masquerade, the SG device stolen, and session key disclosure attacks and does not ensure secure mutual authentication. Thus, we propose a privacy-preserving lightweight authentication protocol for demand response management in the SG environments to address the security shortcomings of Kumar et al.'s protocol. The proposed protocol withstands various attacks and ensures secure mutual authentication and anonymity. We also evaluated the security features of the proposed scheme using informal security analysis and proved the session key security of proposed scheme using the ROR model. Furthermore, we showed that the proposed protocol achieves secure mutual authentication between the SG devices and the UC using Burrows-Abadi-Needham (BAN) logic analysis. We also demonstrated that our authentication protocol prevents man-in-the-middle and replay attacks utilizing AVISPA simulation tool and compared the performance analysis with other existing protocols. Therefore, the proposed scheme provides superior safety and efficiency other than existing related protocols and can be suitable for practical SG environments.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.