Despite the relatively high implementation costs and the complexity of the system, Frequency-modulated Continuouswave Light Detection and Ranging (FMCW LIDAR) has attracted special attention as the next generation LIDAR because generally existing LIDARs using pulse or amplitude modulation have limitation for high-resolution and interference phenomenon. Bandwidth and its linearity of the optical wavelength modulation in FMCW LIDAR have remarkable effects on spatial and range resolution including detection range. Hence, most FMCW LIDAR systems need to linearize the optical frequency sweep for best performance. However, since the linearization techniques normally require high-cost and complex systems, its adoption can be restricted in some application fields where low-cost and simple architecture are important. In this paper, measurement and analysis results for high-resolution of low-cost FMCW LIDAR using non-linear sweep characteristics of different lasers were presented. DFB laser and VCSEL of wavelengths near 1550 nm were utilized in these experiments, and the optical frequency sweep and beat frequency characteristics of each laser were analyzed in detail. The problem of low spectral resolution that occurs due to sweep nonlinearity was improved by the partial-waveform technique. Furthermore, by means of the beat frequency distribution which was obtained from repeat measurement and spline interpolation, the detailed analysis of beat frequency stability and distance resolution for various modulation frequencies were presented. Finally, using the multi-peak-averaging (MPA) method which efficiently utilizes high modulation frequency to improve the distance resolution, it is possible to achieve um-level range detection accuracy in the implemented FMCW system based on the uncompensated FMCW sources.
KSP Keywords
1550 nm, Amplitude Modulation, Application fields, Best performance, Complex systems, DFB laser, Detection Method, Frequency characteristics, Frequency distribution, High resolution, LIght Detection And Ranging(LIDAR)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.